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Abstract

For wavelet transform, a set of orthogonal wavelet basis aims to detect the localized changing features contained in microarray data.
In this research, we investigate the performance of the selected wavelet features based on wavelet detail coefficients at the second level and
the third level. The genetic algorithm is performed to optimize wavelet detail coefficients to select the best discriminant features. Exper-
iments are carried out on four microarray datasets to evaluate the performance of classification. Experimental results prove that wavelet
features optimized from detail coefficients efficiently characterize the differences between normal tissues and cancer tissues.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The recent development of the microarray technique is
rapidly accelerating progress in many areas of biomedical
research. Statistical scoring of features has led to the
discovery of new genes associated with cancer and other
diseases. Explicitly, the advent of these technologies will
revolutionize biology and medicine, but their full utiliza-
tion will depend heavily on accurate data processing and
analysis techniques, and the central role of data analysis
will become even more critical in the future [1].

Approaches to classify the microarray data usually use
the feature selection method and the feature extraction
method. Feature selection methods concern a criterion
relating to the correlation degree to rank and select key
genes, such as the signal-to-noise ratio (SNR) method [2],
the partial least squares method [3], the Pearson correlation
coefficient method [4], the t-test statistic method [5], and
the decision tree combined with the Bag-Boosting scheme
[6–8]. Feature extraction methods are based on a new
transform space of DNA microarray data, such as indepen-

dent component analysis [9] and wavelet feature-based
methods [10–12]. For transformations, a set of new basis
is normally chosen for the data. The selection of the new
basis determines the properties that will be held by the
transformed data. Principal component analysis (PCA)
maximizes the total scatter across all classes. So not only
the between-class scatter but also the within-class scatter
is maximized. However, maximizing within-class scatter is
unwanted information. Linear discriminant analysis
(LDA) is used to extract discriminant information from
microarray data by maximizing between-class variations
and minimizing within-class variations. Instead of trans-
forming uncorrelated components, like PCA and LDA,
independent component analysis (ICA) attempts to achieve
statistically independent components in microarray data; it
is sensitive to high-order statistics in the data, not just the
covariance matrix [9]. PCA, LDA and ICA do not detect
the localized features of microarray data. For wavelet
transform, a set of orthogonal wavelet basis aims to detect
the localized features contained in microarray data. In our
papers [11–13], we investigated the performance of approx-
imation coefficients. Approximation coefficients reduce the
dimensionality of microarray data and are “compress ver-
sion” of the microarray vector. The key gene information is

1002-0071/$ - see front matter � 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.

doi:10.1016/j.pnsc.2009.01.014

E-mail address: yihui_liu_2005@yahoo.co.uk

www.elsevier.com/locate/pnsc

Available online at www.sciencedirect.com

Progress in Natural Science 19 (2009) 1365–1371



investigated based on optimized wavelet features from
reconstructed approximation using the genetic algorithm
(GA) [14]. Though approximation coefficients of low fre-
quency characterize the major part of microarray vectors,
detail coefficients of high frequency represent the changing
information of microarray data, which is ignored by
approximation coefficients of low frequency. Detail coeffi-
cients measure the differences between cancer tissues and
normal tissues using the orthogonal wavelet coefficient
basis. In our research paper [15], we investigated the classi-
fication performance of detail coefficients at different levels.
Experimental results showed that detail coefficients at the
second and the third levels achieve good and robust perfor-
mance. In this study, we carried out our research by using
the genetic algorithm to select the best discriminant fea-
tures from detail coefficients.

First, multilevel wavelet decomposition is performed to
break the gene profile into approximations and details.
Approximation coefficients compress gene profiles and
detail coefficients detect the change points of gene profiles.
We extracted detail coefficients at the second and the third
level to measure the differences between normal tissues and
cancer tissues and reduced dimensionality. Then, the
genetic algorithm is performed to select the best features
from detail coefficients at the second and the third level,
respectively. The optimized features further reduce the
dimensionality of the microarray vector.

2. Wavelet analysis

The wavelet transform has nice features of space–fre-
quency localization and multiresolutions. Wavelet technol-
ogy is applied widely in many research areas, and the major
reasons are its complete theoretical framework and low
computational complexity. The wavelet-transform method,
proposed by Grossmann and Morlet [16], analyzes a signal
by transforming its input time domain into a time–fre-
quency domain. The continuous wavelet transform of the
one-dimensional signal is defined as follows:
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where s, a, b and W denote signal, scale, position, and
wavelet function parameters, respectively. The continuous
wavelet transform (CWT) means continuous in terms of scal-
ing and shifting. The analyzing wavelet at every scale is
shifted smoothly over the full domain of the analyzed
signal. The CWT is a redundant representation because it
uses much more scale and position information than the
non-redundant discrete scale-position representation, which
has a set of orthonormal basis. The discrete wavelet trans-
form (DWT) can be discretized by restraining a and b to a
discrete lattice, i.e. a = 2n, b e Z. The wavelet filter-banks ap-
proach was developed by Mallat [17]. The wavelet analysis
involves two compounds: approximations and details. For

one-dimensional wavelet decomposition, starting from the
original microarray vector s, the first step produces two sets
of coefficients: approximation coefficients (scaling coeffi-
cients) c1 and detail coefficients (wavelet coefficients) d1.
These coefficients are computed by convolving the original
microarray vector with the low-pass filter for approximation
and with the high-pass filter for detail. The convolved coeffi-
cients are downsampled by keeping the even indexed ele-
ments. Then, the approximation coefficients c1 are split into
two parts by using the same algorithm and replaced by c2

and d2, and so on. This decomposition process is repeated un-
til the required level is reached. The coefficient vectors are pro-
duced by downsampling and are only half the length of the
signal or the coefficient vector at the previous level.

Fig. 1 shows the wavelet decomposition tree at three
levels. Fig. 2 shows wavelet detail coefficients of the sample
vector of prostate cancer at four levels. We have 6306, 3159,
1586, and 799 detail coefficients for prostate cancer data
from the first level to the fourth level, respectively. After
wavelet decomposition is performed on each sample vector,
wavelet vectors of 3159 dimensions at the second level or
1586 dimensions at the third level are extracted to represent
the original microarray vector of 12,600 dimensions. For the
prostate cancer dataset, we obtain 100 � 1586 matrix of
wavelet feature vectors for training samples and 34 � 1586
matrix of wavelet feature vectors for test samples. The
feature matrix dramatically reduces computation load.
Then, the genetic algorithm is performed to further select
the best discriminant features from extracted wavelet detail
coefficients, combining with linear discriminant analysis
[14]. Fig. 3 shows the classification process of microarray
data based on optimized GA features.

3. Experiments and results

Four microarray datasets are used to evaluate the per-
formance of the proposed method. We did the preprocess-
ing on microarray profiles by filtering out genes with 0
profile variance over time. After filtering, we extracted
wavelet detail coefficients from the filtered data to measure
the differences between cancer tissues and normal tissues.
When the decomposition level is higher, the wavelet coeffi-

Fig. 1. Wavelet decomposition tree at three levels. Symbol s represents
microarray profiles; c1, c2 and c3 represent approximation coefficients at
three levels; d1, d2 and d3 represent detail coefficients at three levels.
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cients represent larger changes of gene profiles based on
higher derivatives of microarray data, and the small
changes of gene profiles are ignored. First, detail coeffi-
cients at the second and the third level are selected to
reduce dimensionality, respectively. Then, the genetic algo-
rithm is implemented to optimize the wavelet detail coeffi-
cients. The optimized wavelet features are used to evaluate
the performance of classification. Daubechies basis 7 [18],
which has seven non-zero coefficients of the compact sup-
port wavelet orthogonal basis, is performed for wavelet
analysis of DNA microarray data.

3.1. Prostate cancer

Prostate cancer data [19] contain a training set of 52
prostate tumor samples and 50 non-tumor samples labeled

as “Normal” with 12,600 genes. An independent set of test
samples has 25 tumor and 9 normal samples from a differ-
ent experiment.

After filtering the microarray vector with 0 profile vari-
ance, vectors of 12,599 dimensions are obtained. There are
3159 and 1586 detail coefficients obtained based on wavelet
decomposition at the second and the third level, respec-
tively. Fig. 4 shows six optimized features from 3159 detail
coefficients at the second level. Fig. 5 shows six optimized
detail coefficients for test samples of the prostate cancer
dataset. A 97.06% performance is obtained based on six
selected detail coefficient features. When 11 optimized
features are selected from 1586 detail coefficients at the
third level a 100% recognition rate is achieved. Fig. 6 shows
the 11 optimized features are selected from detail
coefficients at the third level. Fig. 7 shows 11 selected

Fig. 2. Wavelet detail coefficients of sample vector of prostate cancer data at four levels.

Fig. 3. The process of GA feature selection and classification. Y, Wtr, Wte, Gtr, and Gte represent the original microarray vector, wavelet feature vectors for
training and test samples, and selected GA feature vectors for training and test samples. N, Ntr, Nte, dori, dwi, and dga represent the number of whole
samples, training samples and test samples, dimension number of the original data vector, dimension number of wavelet detail coefficients at the second or
the third level, and the number of selected GA features, respectively.
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detail coefficients for test samples, and the differences
between cancer tissues and normal tissues are illustrated
clearly. In the paper of Tan et al. [8], SingleC4.5, Bag-
gingC4.5 and AdaBoostC4.5 methods achieved 67.65%,
75.53%, and 67.65% accuracies, respectively, which are
inferior to our method. A 97.06% performance [15] is

achieved based on detail coefficients at the second and
the third level, respectively. In the paper [14], seven
key GA features optimized from reconstructed approxi-
mation at the second level obtain 97.06% performance.
Table 1 shows the comparison results of different
algorithms.

Fig. 4. Detail coefficients at the second level and six selected GA features
for the prostate cancer dataset.

Fig. 5. A 97.06% performance of six GA features selected from detail
coefficients at the second level for test samples of the prostate cancer
dataset.

Fig. 6. Detail coefficients at the third level and 11 selected GA features.

Fig. 7. A 100% performance of 11 GA features selected from detail
coefficients at the third level for test samples of the prostate cancer dataset.

Table 1
The comparison results of different algorithms for the prostate cancer
dataset.

Methods Accuracy (%)

Eleven GA features (detail coefficients at the third
level)

100

Six GA features (detail coefficients at the second
level)

97.06

Detail coefficients (the second level and the third
level) [15]

97.06

Seven GA features [14] (reconstructed
approximation)

97.06

SingleC4.5, BaggingC4.5, AdaBoostC4.5 [8] 67.65, 75.53, 67.65

Fig. 8. Detail coefficients at the third level and seven selected GA features.
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3.2. Lung cancer

Lung cancer data [20] contain two kinds of tissues,
which are pleural mesothelioma (MPM) and adenocarci-
noma (ADCA) of the lung. There are 32 training samples,
including 16 MPM and 16 ADCA. There are 149 test sam-
ples, including 15 MPM and 134 ADCA samples. The
number of genes of each sample is 12,533.

When filtering the microarray vector with 0 profile var-
iance, the vector dimension changed to 12,532. After wave-
let decomposition at the second and the third level is
performed, 3142 and 1577 detail coefficients are extracted,
respectively. After the genetic algorithm is implemented,
when six optimization features are selected from detail
coefficients at the second level, 97.99% accuracy is
achieved. A 98.66% accuracy is achieved when seven opti-
mized features are selected from detail coefficients at the
third level. Fig. 8 shows seven selected GA features from
detail coefficients at the third level. Fig. 9 shows seven
selected features for test samples, and the difference
between malignant pleural mesothelioma and adenocarci-
noma samples is very clear. Table 2 shows the comparison
results of different algorithms. Tan et al. [8] gave 92.62%,
93.29%, and 92.62% accuracies of SingleC4.5, BaggingC4.5
and AdaBoostC4.5 methods, which are lower than our
98.66% performance. The 98.66% performance is also bet-
ter than 97.99% of Li’s method and 97.99% of 20 GA fea-

tures selected from reconstructed approximation. This is
because the details at the third level reflect the changing
information of microarray data and reveal the high-order
information hidden in the microarray profile.

3.3. MLL (ALL vs MLL vs AML)

Leukemia data [21] contain 57 training leukemia sam-
ples, including 20 acute lymphoblastic leukemia (ALL),
17 mixed-lineage leukemia (MLL), and 20 acute myeloid
leukemia (AML) samples. The test dataset contains four
ALL, three MLL and eight AML samples. The number
of attributes is 12,582.

When filtering the microarray vector with 0 profile var-
iance, the dimensionality of the vector does not change and
remains at 12,582. After wavelet decomposition at the sec-
ond and the third level, 3155 and 1584 detail coefficients
are extracted to measure the differences of different tissue
samples, respectively. When five and six GA features are
optimized based on the training matrix 57 � 3155 at the
second level and 57 � 1584 at the third level, respectively,
a 100% correct rate is achieved by using the property of
changing points characterized by wavelet detail coefficients

Fig. 9. A 98.66% performance of selected GA features from detail
coefficients at the third level. It is for test samples of the lung cancer
dataset.

Table 2
The comparison results of different algorithms for the lung cancer dataset.

Methods Accuracy (%)

Seven GA features (detail coefficients
at the third level)

98.66

Six GA features (detail coefficients
at the second level)

97.99

Twenty GA features [14] (reconstructed
approximation)

97.99

SingleC4.5, BaggingC4.5, AdaBoostC4.5 [8] 92.62, 93.29, 92.62
Li’s method [7] 97.99

Fig. 10. Detail coefficients at the second level and five selected GA
features.

Fig. 11. A 100% performance of five selected GA features from detail
coefficients at the second level for test samples of the MLL cancer dataset.
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of high frequency. Fig. 10 shows five GA features selected
from detail coefficients at the second level. Fig. 11 shows
five GA features selected from detail coefficients at the sec-
ond level for test samples. Table 3 shows the comparison
results of different algorithms for the MLL cancer dataset.
We have the same performance as Li’s method, the boost-
ing method, and a better performance than C4.5, Bagging
methods [7]. Detail coefficients at the second and the third
level also achieve 100% performance [15]. Fourteen GA
features optimized from reconstructed approximation of
low frequency obtain 100% accuracy.

3.4. Leukemia (ALL vs AML)

The training dataset consists of 38 bone marrow sam-
ples, including 27 ALL and 11 AML samples with 7129
attributes from 6817 human genes. The test dataset has
34 samples including 20 ALL and 14 AML [2].

After filtering, 7129 dimensions of the vector change to
7128. Only one dimension is reduced. There are 1791 and
902 detail coefficients extracted after wavelet decomposi-
tion at the second and the third level, respectively. When
two GA features are selected from detail coefficients at
the second level, 97.06% accuracy is achieved. Fig. 12
shows two GA features are selected from detail coefficients
at the second level for test samples of the leukemia dataset.
Five GA features optimized from detail coefficients achieve

97.06% performance. Fig. 13 shows five GA features
selected from detail coefficients at the third level for test
samples. Table 4 shows the comparison results of different
algorithms for the leukemia dataset. Our performance is
the same as 97.06% of the Bayesian variable method [22],
better than 82.3% of the PCA disjoint models [23], 88.2%
of between-group analysis [24], 91.18% of SingleC4.5,
BaggingC4.5 and AdaBoostC4.5 methods, and 88.24% of
Li’s method [7]. Four GA features selected from recon-
structed wavelet approximation of low frequency achieve
97.06% performance [14]. Detail coefficients at the second
and the third level achieve 100% performance using the
support vector machine classifier [15] .

4. Discussion and conclusions

In this paper, we propose a hybrid method combining
features extract and feature selection methods for micro-
array data analysis. First, wavelet decomposition at the
second and the third level is performed on the microarray
vector to extract the high frequency features of wavelet
detail coefficients, which takes full advantage of different
order statistical information of the microarray vector.
High-frequency orthogonal detail coefficients at the second
level and the third level reduce the dimensionality of the

Table 3
The comparison results of different algorithms for the MLL dataset.

Methods Accuracy (%)

Six GA features (detail coefficients at the third level) 100
Five GA features (detail coefficients at the second

level)
100

Detail coefficients (the second level and the third
level) [15]

100

Seven GA features [14] (reconstructed
approximation)

100

Li’s method, C4.5, Bagging, Boosting [7] 100, 73.33, 86.67,
100

Fig. 12. A 97.06% performance of two selected GA features from detail
coefficients at the second level for test samples of the leukemia cancer
dataset.

Fig. 13. A 97.06% performance of five selected GA features from detail
coefficients at the third level for test samples of the leukemia cancer
dataset.

Table 4
The comparison results of different algorithms for the leukemia dataset.

Methods Accuracy (%)

Five GA features (detail coefficients at the
third level)

97.06

Two GA features (detail coefficients at the
second level)

97.06

Detail coefficients (the second level and the
third level) [15]

100

Four GA features [14] (reconstructed
approximation)

97.06

Li’s method, C4.5, Bagging, Boosting [7] 88.24, 91.18, 91.18, 91.18
Bayesian variable method [22] 97.06
PCA disjoint models [23] 82.3
Between-group analysis [24] 88.2
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microarray vector and characterize major changing infor-
mation and ignore “small change” of the microarray vec-
tor. The dimension number of 12,600, 12,533, 12,582,
and 7129 for the prostate cancer dataset, lung cancer data-
set, MLL dataset, and leukemia dataset has been reduced
to 1586, 1577, 1584, and 902 detail coefficients at the third
level. This dramatically reduces the computation load for
the next calculation of feature selection based on the
genetic algorithm. In order to select the best discriminant
features of detail coefficients, the genetic algorithm is per-
formed on the detail coefficients to select optimized fea-
tures. Experiments were carried out on four independent
datasets, and optimized GA features achieve competitive
performance compared to other feature extraction and fea-
tures selection methods.

The proposed method uses the orthogonal wavelet basis
to represent the microarray vector and is not dependent on
the training dataset, not involved in large matrix computa-
tion, such as other feature extraction methods of PCA,
LDA, and ICA. When we use Matlab software to run
wavelet decomposition on 136 samples of prostate cancer
with 12,600 dimensions and use the WINDOWS operate
system, Intel 2.1 GHz CPU, and 1G RAM, it only takes
about 3 s. Experimental results prove that the wavelet fea-
ture extraction method is robust and feasible. In our future
work, we will focus on the gene information selection in
original data space based on wavelet analysis.
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